If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-35x+58=0
a = 4; b = -35; c = +58;
Δ = b2-4ac
Δ = -352-4·4·58
Δ = 297
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{297}=\sqrt{9*33}=\sqrt{9}*\sqrt{33}=3\sqrt{33}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-35)-3\sqrt{33}}{2*4}=\frac{35-3\sqrt{33}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-35)+3\sqrt{33}}{2*4}=\frac{35+3\sqrt{33}}{8} $
| 0.115x+0.07(30,000-x)=2910 | | (x-4/3)-(x-10/4)=1 | | (1/3)x-10=X-11 | | 10+3x=2x+6 | | -3(2y+1)-15=-4(y+8)+2y | | 15x-18-14x-2=19 | | (X-2)x5=30 | | 1/5(5n+20)=3n-1 | | 21x^2+47x−24=0 | | 9r+8=10r+7 | | |2x-1|+2=17 | | G(n)=-9+3n+2 | | (2/3)n+10=(1/3)n-2 | | -4(5-4a)=9a+8 | | 9+7x=3x+37 | | 2(-5)+4y=14 | | -27x^2+27x+84=0 | | 20+5(n+2)=5(n-1)-5 | | 3z+17=2z+3 | | 1-2/3x=23-1/15x | | x+40-x-10+x=360 | | 8(x+5)+2=-6 | | 8y-2y+2=10 | | G(n)=-25+3n+2 | | 6=36+6y | | x+2÷x=4 | | -x-2=2(3-x) | | 360-x+40+x-10=x | | 19-3x=14=2x | | 0=1/4x^2-2x-12 | | 9n^2+18n+7=2 | | -27b^2+27b+84=0 |